
In Application Security testing, Dynamic Application Security Testing (DAST) and Static Application Security Testing (SAST) are
prominent techniques. However, Interactive Application Security Testing (IAST) is a promising new entrant in AST, helping to dramatically
reduce false positives.

One of the significant value propositions of IAST is the enablement of Shift-Left practices that allow AST to be integrated into the SDLC
in its early stages, thereby reducing the security issues discovered in the late stages of the development process.

In this white paper, we will provide a brief overview of IAST, its functionality, use cases, advantages, and disadvantages.

Empower Your Development and Security Teams with

Interactive Application
Security Testing

Introduction

What is IAST?

During all of these processes, IAST will monitor applications and report vulnerabilities to end-users.

IAST is easy to implement and use, and IAST is a best fit for API testing, since most of its API testing is automated. The
results obtained from IAST are more accurate, due to the reduction in false-positive findings. Hence, developers can fix
code without being focused on eliminating false positives. And, IAST can be used to test any third-party application, API
or framework, because IAST runs on the compiled code during run time.

As the name suggests, IAST is a more interactive form of application security testing. Although DAST also interacts with an
application, it is only from the end-user perspective and it tests only the application’s exposed surface. An example of this
would be how an end-user accesses an application, with results that are based on HTTP request and response.

SAST also interacts with the application, but it will miss the run time analysis, and mostly its analysis is based on data flow
and pattern analysis. Also, SAST does not examine Frameworks.

To fill the gap, we have IAST instrumented within an application server to monitor everything from 'Source' to 'Sink'. IAST’s
location allows it to examine calls to the database, data flows, code execution in memory, file system access, input
validations, etc. and analyze them to see if they result in any vulnerabilities. The results are then published to developers,
along with identification of the source code that is vulnerable.

How is IAST implemented?
As mentioned above, IAST needs to be instrumented within the application server, which means the IAST tool/agent needs
to be installed on the target application server. This agent then monitors the application whenever there are any requests.

Advantages of IAST
IAST can be easily integrated into the DevSecOps lifecycle. The user doesn't need special skills to install the agent in the
application server, and the developer can continue his/her development. IAST leverages any interaction with the
application into a security test, even if it is legitimate and doesn't contain any malicious properties.

Although IAST is interactive, it does not cover the complete code base, but is instead limited to covered test cases.

An agent needs to be deployed, which requires your agreement.

In certain use-cases, performance can be impacted, as it takes time to analyze and determine vulnerabilities.

Disadvantages of IAST

Using IAST along with functional tests during Dev and QA:

• Gets more out of your existing development workflow.

• Solves security issues early in the development lifecycle.

• Makes things easier to fix (because of fewer context switches).

• Becomes more educational for your developers.

• Reduces noise in staging.

Using IAST along with DAST during the QA/deployment stage:

• Increases security scan coverage.

• Provides actionable information regarding your security issue.

HCL IAST

HCL AppScan on Cloud (ASoC) has newly-deployed IAST capabilities.

Users need to create an IAST scan on ASoC and then just deploy the IAST agent called Secagent.war or access the jar
file in the application server of the target Web application. Here’s an example for your convenience:
%system%Apache-tomcat\webapps

Once deployed, this agent will keep monitoring the application as the user interacts with it. The interaction can be a
functional test script or DAST testing. The results are then pushed to IAST on the cloud.

As seen in the diagram below, IAST has begun its monitoring process, and it has found 30 high-severity issues and 1
new issue that’s informational in nature:

Utilize IAST to Detect a Cross-Site Scripting Vulnerability

Now, let’s have a look at one of AppScan on Cloud’s high-severity findings, a Cross-Site Scripting (XSS) vulnerability:

https://www.hcltechsw.com/appscan/freetrial

About HCL Software

HCL Software is a division of HCL Technologies (HCL) that operates its primary software business. It develops, markets, sells, and
supports over 20 product families in the areas of DevOps, Automation, Digital Solutions, Data Management, and Mainframes. HCL
Software has offices and labs around the world to serve thousands of customers. Its mission is to drive ultimate customer
success with their IT investments through relentless innovation of its products. For more information, please visit
www.hclfederal.com.

Copyright © 2020 HCL Technologies Limited.

And, here are additional details about the XSS finding:

Conclusion

HCL IAST is an optimal solution for DevSecOps, in that it can be implemented easily and can ease the work of
developers and security professionals. It is an excellent tool for Dev teams that offers the advantage of being able to
resolve security issues directly in the development environment. This is a more effective approach than fixing issues
in a staging environment. And, it has the added advantage of allowing you to leverage existing QA processes.

Basically, IAST helps organizations who want to adopt a Shift-Left strategy to reduce their security vulnerabilities,
thereby reducing the cost of fixing bugs.

As you can see in the diagrams above, IAST provides an extremely detailed view of potential vulnerabilities, including
their requests and call trace information. Hence, we can conclude this finding is definitive.

https://owasp.org/www-project-top-ten/
www.hclfederal.com

